
Avinash Konduri
Full Stack Developer

Section 1: Introduction & Basics of
Angular

Section 2: First App in Angular [Practical
Starts Here]

Section 3: Data Binding,ngFor,Style
Management, Pipes, Build-in Directives

Section 4: Modules & Services

Section 5: Rxjs & Rest API calls

Section 6: Authentication & Security

Section 7: Template Driven Forms

Section 8: Reactive Forms

Section 9: Component Communication

Avinash Konduri
Full Stack Developer

Section 10: Debugging and
Auto-Deployment

Section 11: Life Cycle Hooks

Section 12: Pipes - Deep Dive

Section 13: Directives - Deep Dive

Section 14: Advanced Routing

Section 15: Animations

Section 16: Feature Modules

Section 17: Dynamic Components

Section 18: Unit Testing and Angular
Zones

Introduction &
Basics of Angular

Course Introduction

Introduction to Angular

Where to Start Practical

Goals of Angular

Code Compilation Process in Angular

Do’s and Don'ts of Angular

Building Blocks of Angular

Angular Architecture

Overview of Angular packages

Angular Folder Structure

What is Angular ?
❖ Most Popular frontend framework to create maintainable web applications

❖ Completely rewrite of Angularjs

❖ Developed by Google

❖ Angular CLI Enables you to create things faster

Application State
[Stored in the component]

Application Logic
[Written in the Component]

Design Logic
[written in Template]

Business logic
[Written in Service]

Features of Angular

Goals and Advantages of Angular

Separation of DOM Manipulation
Logic from Application Logic

Separation of HTML Logic from
Application Logic

Separation of Business Logic
from Application Logic

Make the code Unit Testable

Make the "Single-Page
Application Development" easier

Make the code Maintainable

Application
Source Code

Template Angular
Compiler

Typescript
Compiler

JavaScript Executed by
Browser

[Type script] [tsc]

[HTML] [ngc]

Do’s and Don'ts in Angular
D

on
’ts

D
o’

s

➢ Never perform DOM manipulation directly in Angular Components to make the "Application Logic

independent of "Design logic" and make it unit testable.

➢ Never write Javascript code in Angular Templates.

➢ Never write Business logic in Components.

➢ Avoid using jQuery to manipulate DOM elements.

❖ Always use Routing and Modules

❖ prefer Routing Guards and JWT for Authentication & Security

❖ Always manipulate "application data" by writing the "application Logic" in the components

❖ Always place global css "styles.css" file and local css style in "component.css" file

❖ Always write "REST-API calls" and Business Logic in Services only and return Observable from

Services

❖ prefer to use Bootstrap [or equivalent].

❖ Always user css-pre processor, such as scss.

Building Blocks of Angular
B

ui
ld

in
g

B
lo

ck
s

of
 A

ng
ul

ar

Components
[App Data + Event Handler]

Templates
[Design Logic]

Services
[Business Logic + REST API calls]

Directives
[Direct DOM Manipulation]

Modules
[Collection of Components]

DataBinding
[Mediates between components and templates]

Dependency Injection
[Loads service objects in to components]

Module

Angular Architecture

Data Binding

Data Binding

Meta Data

Dependency
Injection

Angular Packages

1.@angular/core
● Provides essential pre-defined

decorators,classes,interface and modules that are
needed to run every angular application

● EX: @component,@NgModule, @pipe,@Directive,
@Injection,
@inject,Ngzone,Onchange,OnInt,ApplicationModule
etc

2.@angular/common

● Provides essential pre-defined Provides built-in
directive that are useful for most of the real-time
applications

● Ex: ngIf,ngSwitch,ngClass,ngFor etc

3.@angular/compiler

● Compiles "templates"(html code) into "javascript
code"

4.@angular/platform-browser-dynamic

● Invokes the angular compiler(JIT compilation) and
specifies the startup module and also starts
executing the application

Angular Packages

5.@angular/platform-browser

● Provides a set of pre-defined classes that are
related to DOM and browser interaction.

● Ex:BrowserModule

6.@angular/forms

● Provides necessary pre-defined classes that are
related to a are needed to create and execute
angular forms

● Ex: FormsModule, ReactiveFormsModule,
Validators, ngModel,ngForm etc.

7. @angular/router

● Provides necessary pre-defined classes that are
needed to create and execute angular routes

● Ex: RouterModule,Routes,
ActivatedRoutes,canActive, routerLink ect.

8.@angular/animations

● Provides necessary pre-defined classes that are
needed to create and execute angular animations

● Ex: BrowserAnimationsModule, animate, state,
style, transition etc.

Angular Packages

9.@angular/cli

● Provides necessay pre-defined commands that are
needed to create, compile, build, add items in
angular applications

● Ex: ng new, ng serve, ng build, ng test etc

10.rxjs

● Provides necessary pre-defined classes for creating
Observables, which are needed to represent the
response of REST_API calls of AJAX

● Ex: Observable, Observer, Subject etc

11.zone.js

● Provides necessary pre-defined classes for
executing "change detection processes",while
executing angular app

Angular File Folder Structure

● e2e : Contains "end-to-end" test cases
● src : Contains source code of the application

○ app
■ app.component.scss : Contains CSS styles of AppComponent.
■ app.component.html : Contains templates of AppComponent
■ app.component.spec.ts : Contains unit test cases of AppComponent
■ app.component.ts : Contains AppComponent.
■ app.module.ts : Contains AppModule
■ app-routing.module.ts : Contains Routing Configuration

○ assets : Contains static files such as images
○ favicon.ico : Contains browser icon
○ index.html : Default page / startup page
○ main.ts : Defines Startup Module
○ polyfills.ts : Defines polyfills (additional scripts) needed to load & run app
○ style.scss : Contains global CSS styles of entire app

● angular.json : Contains Angular CLI configuration
● package.json : Defines current app (package) details and its dependencies
● tsconfig.json : Contains TypeScript Compiler configuration settings

Section 2: First App in
Angular [Practical

Starts Here]

Creating First app in Angular

Adding bootstrap

Adding Bootstrap navBar

Creating & Nesting Components

Creating Basic Routing

1. How to Specify Port Number in "ng serve" command

-pt 5200
--port 5200
--port=5200
Both B & C

2. What is the default location of global css file "styles.scss" in Angular App?

app\styles.scss
src\styles.scss
app\src\styles.scss
src\assets\styles.scss

3. Which tag is used for navigation bar in Bootstrap in Angular App?

<navigation>
<menu>
<nav>

Assignment: Wizard Assignment: Creating Simple Wizard using Angular Routing

Create a set of components and create wizard navigation among them, using Angular routing. The user can navigate forth and
back using the buttons.

Assignment: Creating Wizard using Routing

Task:

Create PersonalDetailsComponent, ContactsDetailsComponent, SkillsComponent and

WorkExperienceComponent and WizardFinised and enable navigation using routerLinks, in a wizard

What is a Component

➢ Component class contains "programming logic" of the application

➢ COmponent class contains "application data" + "event handler methods"

➢ Component class is responsible to supply data to the template

Class component
{

Properties
Methods

}

Component Class

Component Hierarchy

http://localhost:4200/

Root
Component

Root
Template

Child
Component 1

Child
Template 1

Child
Component 1

Child
Template 1

Grand Child
Component 1

Grand Child
Template 1

http://localhost:4200/

Component Metadata

@component({
templateUrl: ”templatefile.html”
Selector: ”tagName”,
styleUrl: [“StyleSheet.css”
})
]

Decorator

Meta Data

Class AppComponent
{

Properties
Methods

}

Component

#id
{

…..
}

Style Sheet

<div>
 <>
 <>
 <>
 <>
 <>
 <>
</div>

Template

<tagName></tagName>

Data Binding

Interpolation Binding Property Binding

Event Binding Two-way Binding

Property

Component

HTML Template

Template

Property

Component

HTML Template

Template

Property
Component

HTML Template

Template

HTML Template

Template

Property

Component
{{ }} []

() [{ }]

● Relationship between "Template's HTML Element" and "Component's Property"
● The value of "Template's HTML Element" will be automatically updated in to "Component's Property" and vice versa

Data Binding

● [style.property] = "value"
● [style.property] = "(condition)? truevalue : falsevalue"

● [ngClass] ="value"
● [ngClass] = "(condition)? truevalue : falsevalue"

ngIf

<tag *ngIf=”condition”>
</tag>

Simple ngIf

<tag *ngIf="condition;then TrueTemplate; else
FasleTemplate">
</tag>

ngIf and Else

Built-in Pipe

Property

Component

HTML Template

Template

{{property | uppercase}} Converts string to Uppercase

{{property | lowercase}} Converts string to Lowercase

{{property | slice:startIndex:endIndex}} Gets Part of string, between startIndex and endIndex

{{property | number:.2}} Provides digit grouping and controls decimal places

{{property | currency:"USD"}} Provides currency symbol

{{property | percent}} Converts the number to percent

{{property | json}} Converts the "JavaScript Object" to :"json"

{{property | date}} specifies date format

Pipe

Date Formats of Date Pipe

shortDate 31/12/2019

mediumDate Dec 31, 2019

longDate December 32,2019

fullDate Monday, December 31,2019

shortTime 11:59 AM

mediumTime 11:59:59 AM

short 31/12/2019,11:59 AM

medium Dec 31, 2019, 11:59:59 AM

d/m/y 31/12/2019

y-m-d 201-12-31

h:m:s 11:59:59

a AM

H:m 23:59

EEE Tue

EEEE Tuesday

MMM Dec

MMMM December

z +0530

❖ Module is collection of Components,directives, pipes

❖ Mainly used to organize the components and others (directives and pipes)

Goals of Modules:

● Consolidate components, directives, pipes into cohesive of functionality

● Make some of the components, directives, pipes public; so that, other modules component templates

can use them

● Import components, directives, pipes from other modules, that are required by current module's

component templates

● Provides services that other components can use

What is Angular’s Module

Module

Components Directives Pipes

● Angular Modules are called NgModules

● An NgModule is a class that is decorated with "NgModule" decorator, that

contains the following metadata

● Module metadata

● declarations:list of components, directives and pipes, that are part of current

module

● exports:list of components, directives, and pipes, that are public that can be

accessible in other modules, that are importing the current module

● imports:list of modules, that the current module imports; so, the current

module can use components, directives,pipes that are already exported by

that particular module

● providers:List of services that can be used by the components, directives and

pipes of current module

What is Angular’s Module

@NgModule({
declarations:[..., ..., ..],
exports:[..., ..., ...],
imports:[..., ..., ...],
providers:[..., ..., ..,],
})
class ModuleName
{
}

Simple ngIf

NgSwitch

<tag [ngSwitch]="property">
<tag

*ngSwitchCase="value1">Content here</tag>
<tag

*ngSwitchCase="value2">Content here</tag>
<tag

*ngSwitchCase="value3">Content here</tag>
<tag *ngSwitchDefault>Content

here</tag>
</tag>

NgSwitch

What is Service in Angular?

Class Service
{

Properties
Methods

}

Service

● Service is a class, which is a collection of properties & methods, which contains re-usable programming logic, which

mainly contains “business logic” and also performs “data source interaction”

● Service can be accessible in components

● Goals of Service:

○ To separate business logic and data access logic from component

○ Makes components contain code for only supplying the data to the template and respond to the user actions such

as click and also call the necessary service

Component 1

Component 2

Call

Call

Steps to work with Angular Services

@Injectable({providedIn:”root”})
Class Service
{

Properties
Methods

}

Service

class Component
{

constructor(@Inject(service) private:Service)
{
}

}

Service

Service
Object

1. Create service class
Create a class with one or more properties and
methods that contains business logic and data
access logic.

2. Make ready the service for Dependency Injection:
Add @Injectable() decorator above the service
class

3. Provide the service Globally / Locally:
Add providedIn: “root” option in @Injectable()
Decorator.[or]
Add Providers: [Service] in AppModule’s
metadata.[or]
Add providers:[service] in any other module’s
metadata.[or]
Add providers: [Service] in any other component’s
metadata

4. Inject the service into actual component
Add @Inject(Service) private referenceVariable:
Service in any component’s constructor
Add private referenceVariable : Service in any
component’s constructor

What is Observable and Observer?

● "Observable and Observer" is a pattern of "message passing" from "publisher" to "subscriber"

● Flow of functionality:

○ Observable is created.

○ Observer subscribes to the Observable.

○ Observable can pass messages (notifications) to the Observer

○ Each time, when the Observable passes a notification, it is received by Observer

● Real-time usage of Observables and Observer:

○ while receiving response from AJAX/API

○ while performing large tasks in client (browser).

● Observables execute only when the observer subscribes to it.

Observable ObserverNotifications

How “Observable and Observer” works?

Observable

(User Inputs / Http Requests / Custom Data Source)

Handle
Data

Handle
Error

Handle
Completion

Observer

What is Angular Module

Module

Module is a collection of Components, directives, pipes.

Mainly used to organize the components and others (directives and pipes)

Goals of Modules:

● Consolidate components, directives, pipes into cohesive of functionality.

● Make some of the components, directives, pipes public; so that, other module's component template can

use them.

● Import components,directives, pipes from other modules, that required by current module's component

templates

● Provide services that the other modules can use

Components Directives Pipes

RxJs - Map

This "Map" is an RXJS Operator, which executes a function after receiving response from the server

S
E
R
V
E
R

Send Response Subscribe Handle Data
[Receive Modified Response]

Map
[Business Logic and Modify the

Response]

pipe(map(
(data) =>
{

return data;
}
))

Authentication with ASP.Net
Core

Models\Project.cs

Model class for Project table

ViewModels\LoginViewModel.cs

Model class for Login View

ServiceContracts\IUserService.cs

Interface for Users Service

Services\UserService.cs

Service for user authentication

Controllers\AccontController.cs

controller for user authentication

Controllers\ProjectsController.cs

Controller for CRUD operations of "Projects" table

Controllers\HomeController.cs

Controller for serving home/index page at startup

Identity\ApplicationUser.cs

Extends "IdentityUser" class, and acts as model class for users information

Identity\ApplicationRole.cs

Extends "IdentityRole" class, and acts as a model class for users roles information

Identity\ApplicationUser Store.cs

Extends "UserStore" class, and provides methods for storing users information

Identity\ApplicationRoleStore.cs

Extends "RoleStore" class, and provides methods for storing user roles information

Identity\ApplicationUserManager.cs

Extends "UserManager" class, and provides methods for manipulating users information

Identity\ApplicationRoleManager.cs

Extends "RoleManager" class, and provides methods for manipulating user roles information

Identity\ApplicationSignInManager.cs

Extends "SignInManager" class, and provides methods for user login

Identity\ApplicationDbContext.cs

Extends "IdentityDbContext" class, and contains other DbSet's for all the database tables,

that you want to interact with.

Views\Home\index.cshtml

Startup view

appSettings.json

Contains application configuration settings such as connection strings, secret keys etc

Startup.cs

Contains "ConfigureServices" and "Configure" methods to add necessary services to the application

What is JSON Web Token(JWT)

A JSON Web Token (JWT) is a JSON object that is defined in RFC 7519 as a
safe way to represent a set of information between two parties

RFC (Request For Comments) is a formal document released by IEFT(Internet
Engineering Task Force),Who releases Internet Standards

How JSON web Token Works

● The most common scenario of JWT is authentication.

● Once the user logs-in, JWT (an encrypted token) will be sent to the client.

● Each subsequent request includes JWT sent to the server, then the server validates JWT and provides

response only when the JWT token is valid.

● The signature is generated based on the header and payload, so that receiver can verify the content

hasn't been tampered with

Authentication Server

User sign in with User ID & Password

User Authenticated, JWT created, and returned to the user

API Server

User passes JWT as request header, when making API calls

Application verifies and processes the API call

JWT

JWT

Contents of JWT Web Token

data = base64Encode(header)+"."+base64Encode(payload)

hashedData = hasg(data, secret)

signature = base64encode(hashedData)

jwtToken = data+"."+signature

Algorithm

JWT Token Generation Algorithm

In
pu
ts

Header PayLoad SecretKey

{
"typ":"JWT",
"alg":""HS256"

}

{
"userId":"705f24034b7745a680c6670

4518de31a"
}

MySecret

●
●
● HMAC + SHA256
● RSASSA + SHA256
● ECDSA + SHA256

Hashing Algorithm

Example

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwia
WF0IjoxNTE2MjM5MDIyfQ SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

How JWT is verified (in subsequent request)

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9 eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiaW
F0IjoxNTE2MjM5MDIyfQ SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c. .

Header (base64 string) Payload (base64 string) Signature (base64 string)

data = receivedHeader+"."+receivedPayload

hashedData = hash(data, secret)

signatureForVerification = base64encode(hashedData)

signatureForVerification == receivedSignature

Verification Algorithm

Best Practices for JWT Authentication

● Don't include sensitive user information, such as Password, PIN etc., in the Payload; User Id and

Timestamp is recommended for Payload

● Don't include too much information in the Payload, as it increases length of the JWT token

● Since JWT are signed and encoded only, and since JWT are not encrypted, JWT do not guarantee any

security for sensitive data

○ If you require, you can encrypt the header and payload, before starting the JWT algorithm

● Always enable HTTPS, while using JWT, because HTTPS provides end-to-end encryption

● It is not recommended to store JWT token in cookies, since cookies are accessible by attackers

HTTP Interceptors

Class to use while working with Interceptors

What is Guard

Current Route
canDeactivate

Guard
For Current Route For Requested

Route

canActivate
Guard Requested Route

● Guard is a service, which can tell the royter whether the current user can navigate to a specific route, or not
● Guards automatically execute before entering to a route and before leaving the route

The user is in
Current Route
Ex:/dashboard

Check whether
the user can
leave the current
route or not; and
return true or
false

Check whether
the user can
navigate to the
requested route
or not; and return
true or false

